Volume 23

Number 26

December 19, 1984

Inorganic Chemistry

0 Copyright 1984 by the American Chemical Society

Articles

Contribution from the Departments of Chemistry, University of Idaho, Moscow, Idaho 83843, and Portland State University, Portland, Oregon 97207

A Pentafluorosulfur *B***-Sultone and Some Derivatives**

JOANN M. CANICH,^{1a} MARIA M. LUDVIG,^{1a} GARY L. GARD,*^{1a} and JEAN'NE M. SHREEVE*^{1b}

Received June 26, 1984

The new pentafluorosulfur β -sultone, $SF_4CFCF_2OSO_2$ (I), resulted from the reaction of sulfur trioxide with (trifluorovinyl)sulfur pentafluoride. In the presence of Et_3N , I underwent rearrangement of $SF_5CF(SO_2F)C(O)F (II)$, and with H₂O, I gave SF₅CFHSO₂F (III). Inorganic bases such as Ca(OH)₂ or NaOH with I formed the respective metal sulfonates, Ca(SF₃CFHSO₃), (IV) and Na(SF₃CFHSO₃) (V). IV was obtained also when Ca(OH)₂ was reacted with III. IV or V with sulfuric acid gave a new stable sulfonic acid, SF₅CFHSO₃H (VI). III and VI are hydrolytically stable.

Introduction

(Fluoroalky1)sulfonic acids or salts continue to be subjects of considerable study. These acids are among the strongest acids known and have high thermal stabilities. Their salts (Na, K, Ba) have long liquid ranges. While many methods exist for preparing (fluoroalkyl)sulfonic acids/salts,²⁻⁵ their utility in producing a sulfonic acid and its derivatives that contain a pentafluorosulfur (SF,) group has not been demonstrated. For example, Temple prepared $(CF_3)_2CFSO_2F$ by reacting hexafluoropropene with SO_2F_2 . Reaction with $Ca(OH)_2$ gives the corresponding calcium salt:4 fluorosulfur (SF₃) group has not been demonst
ample, Temple prepared (CF₃)₂CFSO₂F by re
oropropene with SO₂F₂. Reaction with Ca(OH)
responding calcium salt:⁴
CF₃CF=CF₂ + SO₂F₂^{-CSF} (CF₃)₂CFSO₂

$$
CF3CF = CF2 + SO2F2 \xrightarrow{C8F} (CF3)2CFSO2F
$$

(CF₃)₂CFSO₂F + CaO(H₂O) \rightarrow [(CF₃)₂CFSO₃]₂Ca

All attempts to prepare a SF_s -containing sulfonic acid salt by analogy to the above reactions by using SO_2F_2 with (perfluorovinyl)sulfur pentafluoride $(SF₅CF=CF₂)$ failed.

Sulfur trioxide reacts with fluoro olefins producing β -sultones.⁵ Rearrangement of β -sultones to sulfonyl fluorides followed by addition of base should produce salts of sulfonic acids that upon acidification will yield the desired sulfonic acid. We report that this route is effective in producing the first SF_s -containing β -sultone, sulfonyl fluoride, sulfonic acid, and sulfonate salts.

Results and Discussion

The novel pentafluorosulfur β -sultone, 2-hydroxy-1-(pentafluoro-X6-sulfanyl)- **1,2,2-trifluoroethanesulfonic** acid sultone (1)

-
-
-
-
- (1) Portland State University. (b) University of Idaho.
(2) Haszeldine, R. N.; Kidd, J. M. J. Chem. Soc. 1954, 4228.
(3) Gramstad, T.; Haszeldine, R. N. J. Chem. Soc. 1957, 2640.
(4) Temple, S. J. Org. Chem. 1968, 33, 344. **1960,82, 6181.**

SF_scr-cF₂
0₂ ⁻⁻⁻⁰

was prepared by reacting $SF_5CF=CF_2$ with distilled sulfur was prepared by reacting $SF_5CF=CF_2$ with distilled sulfur
trioxide in a modified Carius tube under pressure and with
mild heating (up to 100 °C):
 $SQ_3 + SF_5CF=CF_2 \longrightarrow SF_5CF-CF_2$ mild heating (up to $100 °C$):

$$
SO_3 + SF_5CF = CF_2 \longrightarrow SF_5CF - CF_2
$$

$$
O_2S - O
$$

$$
I
$$

The β -sultone (I) is a colorless stable liquid that boils at 88 ^oC. Treatment of this sultone with a catalytic amount of triethylamine brought about a quantitative rearrangement to 2-(fluorosulfonyl)-2-(pentafluoro- λ^6 -sulfanyl)-2-fluoroacetyl fluoride (II):

Possible mechanisms for the formation and rearrangement reactions are given in Scheme I.

An attempt to prepare the corresponding $2-(\text{fluoro-}$ **sulfonyl)-2-(pentafluoro-X6-sulfanyl)-2-fluoroacetic** acid derivative (FSO₂CF(SF₃)COOH) by reacting the β -sultone with Watter failed. Instead, the following reaction occurred, pro-

water failed. Instead, the following reaction occurred, pro-

ducing hydryl(pentafluoro- λ^6 -sulfanyl)fluoromethanesulfonyl

fluoride (III):
 $SF_5-CF-CF_2 + H_2$ ducing **hydryl(pentafluoro-X6-sulfanyl)fluoromethanesulfonyl** fluoride (111):

02 -

The mechanism in Scheme I1 is suggested to explain the formation of the sulfonyl fluoride.

Scheme I

formation reaction

rearrangement reaction

Scheme I1

It was not possible to isolate the unstable formic acid intermediate. In a separate experiment, the reaction of $SF₅C F(SO_2F)C(O)F$ with water produced SF_5CFHSO_2F , CO_2 , and HF. Although SF₅CF(SO₂F)COF is hydrolytically unstable, it is thermally stable.

Treatment of the β -sultone (I) with a base, either Ca(OH), or NaOH, produced the corresponding calcium or sodium **hydryl(pentafluoro-X6-sulfanyl)fluoromethanesulfonates:** or NaOH, produce
hydryl(pentafluoro-
I + Ca(OH)₂ \rightarrow

$$
I + Ca(OH)2 \rightarrow Ca(SF5CFHSO3)2 + (CaF2 + CaCO3 + H2O)\nIV\nI + NaOH \rightarrow Na(SF5CFHSO3) + (NaF + Na2CO3 + H2O)
$$

The sulfonyl fluoride, SF_5CFHSO_2F (III), can be used in place of the β -sultone with Ca(OH)₂ to form the calcium salt.

$$
Canich et al.
$$

2III + 2Ca(OH)₂ \rightarrow Ca(SF₅CFHSO₃)₂ + CaF₂ + 2H₂O

The calcium or sodium salt with sulfuric acid gave an $SF₅$ -containing sulfonic acid, hydryl(pentafluoro- λ^6 -

sulfany1)fluoromethanesulfonic acid. IV or V + H2S04 - SF5CFHS03H + CaS04 (Na2S04) VI

I11 does not react with water to form VI.

The infrared spectra for these derivatives have a common feature the presence of the $SF₅$ group and its characteristic infrared absorption bands. Cross and co-workers⁶ reported that for compounds containing the $SF₅$ group the most intense bands should occur in the region 850-920 *cm-'* (S-F stretching modes) and in the region 600 cm^{-1} (S-F deformation modes). For the new compounds reported in this paper, absorption bands in the $844-914$ -cm⁻¹ region are assigned to the S-F stretching vibrations. The S-F deformation modes are found in 586-610-cm⁻¹ region. The stretching vibration of the $C-F$ group appears to be located in the $1096-1156$ -cm⁻¹ region. In general, it is expected that for compounds containing a single C-F bond this absorption will be in the $1000-1110$ -cm⁻¹ region.⁷ For $SF₅CFHCF₃$, the C-F stretching vibration for the C-F group is assigned to the band at $1161 \text{ cm}^{-1.8}$

The other functional groups also exhibit characteristic absorption bands. The carbonyl band in $SF₅CH(SO₂F)COF$ is found at 1884 cm-I and agrees closely with that found for $SF_5CF(CF_3)COF.$ ⁹ The asymmetric and symmetric $-SO_2$ bands in 1-111 can be tentatively assigned to the regions 1448-1472 and 1214-1250 cm-I, respectively. **This** assignment is complicated by the appearance of strong carbon-fluorine absorption bands, particularly for the β -sultone, but, in any case, the above assignment agrees closely with that found for $CF₃SO₂F$ and other sulfonyl derivatives.⁹ For the sulfonyl fluoride group, the strong S-F absorption band is located near 786 cm^{-1} and is in the region found for other sulfonyl fluorides.1° This band disappears when the acid/salts are formed from $SF₅CFHSO₂F$. The asymmetric and symmetric $SO₃$ bands for the sulfonic acid and salts are found in the 1220- 1276- and 1052-1100-cm⁻¹ regions, respectively (for salts containing the $CF_3SO_3^-$ group the respective regions are 1266-1279 and 1025-1042 cm⁻¹).¹¹ The C-H absorption bands for III-VI are located near 3000 cm⁻¹ (for $SF₅CFHCF₃$ the C-H stretching frequency was located at 3007 cm⁻¹).⁸

The mass spectra for these compounds did not contain molecular ions, but appropriate fragment ions were found. The highest positive fragment ions were as follows: for I, $(M -$ 3 F)⁺ and $(M - SO_3)$ ⁺; for II, $(M - SF_5)$ ⁺; for III, (SF_5) ⁺. The positive and negative ion spectra for the acid showed fragments not only for the monomer but for the dimer as well; the highest negative ion found for the monomer was $(M - H)^{-}$.

The NMR spectra (see Table I for chemical shift values) generally consist of complex multiplets. However, for some, first-order coupling constants could be determined, and these are listed in Table 11.

The SF, fluorine resonance consists of an **AB4** multiplet; the minimum between the **B** maxima is reported as the SF4 *(eq)* chemical shift while the SF(ax) chemical shift is reported as the center (line six) of its nine-line pattern. The reported *J1.3* coupling is the observed doubling of the nine-line **A** pattern

- **(6)** Cross, L. H.; Cushing, G.; Roberts, H. L. *Spectrochim. Acta* **1961,** *17,* **344. (7)** Brown, **J. K.;** Morgan, K. J. *Adu. Fluorine Chem.* **1965,** *4,* **256.**
- **(8)** Efner, H. F.; Kirk, R.; Noftle, R. E.; Uhrig, M. *Polyhedron* **1982,** *I,*
- **723. (9)** DeBuhr, **R.;** Howbert, J.; Canich, J. M.; White, H. F.; Gard, **G.** L. *J. Fluorine Chem.* **1982,20, 515.**
-
- **(10)** Ham, N. **S.;** Hambly, A. N.; Laby. R. H. *Ausz. J. Chem.* **1960,13,443.** (11) Robinson, E. A. Can. *J. Chem.* **1961, 39, 247.**

Table I. NMR Chemical Shifts^a

^a Fluorine chemical shifts in ppm from CFC₃ and proton chemical shifts in ppm downfield from internal Me₄Si. ^b For CF₃CHFSO₂F the chemical shifts (ppm) are¹³ SO₂F (+50.5) and CF (-189). ^c 8 values:¹³ CF₂BrCHFSO₂F, 5.84; CF₂(OCH₃)CHFSO₂F, 5.68; CF₃CHFSO₂F, 3.86. d The chemical shift for the proton of $-SO_3H$ is δ 11.37.

Table II

compd	coupling const, Hz	
$F_{(1)}$ -SF ₄₍₂₎ - $\left[\begin{matrix}C & C \\ C & C \\ C & C\end{matrix}\right]$ $\mathsf{F}_{(\mathsf{S})}$	$J_{1,2} = 156.6$	
$F_{(1)} S F_{4 (2)} C \begin{bmatrix} H_{(4)} \\ -S O_2 F_{(5)} \\ \vdots \\ F_{(3)} \end{bmatrix}$	$J_{1,2} = 141.3$ $J_{1,3} = 2.3$ $J_{2,4} = 4.8$	$J_{2,5} = 8.2$ $J_{3,4} = 42.9$
F(4) $F_{(1)}$ -SF ₄₍₂₎ ⁻ C --SO ₂ F ₍₅₎ $F_{(3)}$	$J_{1,2} = 100.1$ $J_{2,5} = 8.7$ $J_{3,4} = 19.6$	
$[F_{(1)} \text{-}SF_{4(2)} \cdot \begin{cases} 1 & \text{if } (4) \\ -50 & \text{if } 2 \leq 0 \\ 0 & \text{if } (3) \end{cases}$	$J_{1,2} = 155.1$ $J_{1,3} = 2.5$ $J_{2,3} = 1.4$	$J_{2,4} = 5.1$ $J_{3,4} = 42.2$
H(4) $F_{(1)}$ -S $F_{4(2)}$ - $C - SO_3H_{(5)}$ $F_{(3)}$	$J_{1,2} = 146.3$ $J_{1,3} = 2.5$ $J_{2,4} = 5.1$	$J_{2,4} = 5.1$ $J_{3,4} = 42.3$

and is assumed to be due to $SF(ax)$ to $CF(vic)$ coupling. Because of the complexity of the CF resonance, unambigous confirmation of the assignment cannot be documented. For III, IV, and VI the $J_{2,4}$ and $J_{3,4}$ values are consistent. The proton spectrum in each case is a doublet of pentets. The carbon-fluorine resonance is also a doublet of multiplets with a $J_{3,4}$ value around 42 Hz. The SF₅CFHCH₃, the $J_{3,4}$ ($J_{F,H}$) coupling value was found to be 43.5 Hz.¹² For the acid fluoride, II, the CF resonance consists of two poorly resolved multiplets with a doublet separation of 19.6 Hz. In $SF₅CF$ - $(CF_3)COF$, this coupling was found to be \sim 18 Hz.⁹ The NMR spectrum of the β -sultone is complex, but there are several interesting features: (1) Only one isomer is present as the spectrum consists of single sets of resonances for the $SF₅$, CF, and CF₂ groups. (2) The CF₂ group that is present in an unsymmetrical ring exhibits a weak-strong-strong-weak combination of peaks (this pattern was observed for other fluorinated sultones⁵). (3) The NMR spectrum cannot unambiguously determine which isomer is present, but due to the fact that the rearranged product obtained by treating the β -sultone with Et₃N is SF₅CF(COF)SO₂F and not SF₅C-(O)CF₂SO₂F or FC(O)CF₂SO₂F, it is possible to establish its structure as SF₅CFCF₂OSO₂.

Experimental Section

Materials. The compounds used in this work were obtained from commercial sources: SO_3 , CsF, SO_2F_2 (Union Carbide); $(CH_3CH_2)_3N$ (MCB); CH₃CN (dry), diglyme (dry), NaOH, CaO (Mallinckrodt);

(13) Dean, R. R.; Lee, J. Trans. Faraday Soc. 1968, 64, 1409.

fuming H_2SO_4 , 95% H_2SO_4 (Baker). Except for SO_3 , which was vacuum distilled, all reagents were used without further purification. $SF₅CF = CF₂$ was synthesized by literature methods.¹⁴

General Procedure. Gases were manipulated in a conventional Pyrex vacuum apparatus equipped with a Heise-Bourdon tube gauge and a Televac thermocouple gauge. Infrared spectra were obtained by using a 8.25-cm Monel cell with KBr or KRS-5 windows or as solids between KBr, KRS-5, or NaCl disks on a Perkin-Elmer 476 spectrometer. The spectra were calibrated with a polystyrene film. The NMR spectra were recorded with a Varian Model EM-390 spectrometer operating at 90.0 MHz for proton and 84.67 MHz for fluorine resonances. Me₄Si and F-11 were used as internal standards. The mass spectra were taken on a CEC 21-110 B double-focus mass spectrometer equipped with a 6-kV ion accelerator and operated at 70 V. Perfluorokerosene (PFK) was used as an internal standard. Elemental analyses were determined by Beller Microanalytical

Laboratory, Göttingen, West Germany.

Preparations. $SF_5CFCF_2OSO_2$ (I). To a 130-mL Carius tube equipped with a Kontes Teflon stopcock were added 88 mmol of freshly distilled SO_3 and 76 mmol of $SF_5CF=CF_2$. The vessel was warmed slowly to 80 °C over a period of 6 h and then heated at 100 °C for 36 h. Distillation of the mixture gave 43.7 mmol of the sultone: 58% yield; bp 88 °C (757 mm). The infrared spectra gave the following absorption bands (cm⁻¹): 1448 (s, with sh at 1460 and 1438), 1372 (w), 1346 (w), 1304 (s), 1240 (vs), 1214 (vs with sh at 1158), 1096 (s) , 1020 (m), 896 (vs), 854 (vs), 788 (s), 692 (mw), 654 (ms), 632 (w) , 610 (ms), 596 (ms), 570 (m), 532 (ms), 476 (w), 460 (w), 386 (vw) .

The ¹⁹F NMR spectrum (ϕ) gave the following relative peak areas: SF (1.0), SF₄ (3.9), CF (1.0), CF₂ (1.9). A molecular ion was not observed, but other appropriate fragment ions were found. Mass spectrum $(m/e): 231 (M-3F) + 219 (M - CF_3) + 208 (M - SO_3) + 181 (M - CF_3 - 2F) + 161 (M - SF_5 or C_2F_3OS_2) + 129 (C_2F_3OS_2) + 127 (SF_5) + 113 (C_2F_3S) + 108 (SF_4) + 101 (SF_5C) + 100 (C_2F_4) + 101 (SF_5C) + 101 (CF_5C) + 101 (CF_5C) + 101 (CF_5C) + 101 (CF_5C) + 101 (CF$ 27 (C₂F₃O)⁺, 89 (SF₃)⁺, 81 (C₂F₃)⁺, 80 (SO₃)⁺, 70 (SF₂)⁺, 69 (CF₃)⁺, 66 (COF₂)⁺, 64 (SO₂)⁺, 66 (COF₂)⁺, 64 (SO₂)⁺, 66 (COF₂)⁺, 64 (SO₂)⁺, 60 (SOC)⁺, 51 (SF₁+, 50 (CF

 $SF₅CF(SO₂F)COF (II)$. To a 50-mL Pyrex vessel equipped with a Kontes Teflon valve and a Teflon-coated stirring bar were added 9.27 mmol of I and 0.25 mmol of Et_3N . The reaction mixture was allowed to warm slowly to $0 °C$ and maintained at $0 °C$ (18 h) and room temperature (3.5 h). The colorless liquid, SF₅CF(SO₂F)COF (8.9 mmol), was formed in 96% yield. The infrared spectrum gave the following absorption bands (cm⁻¹): 1884 (s), 1472 (s) 1248 (m), 1232 (m), 1218 (m), 1148 (s), 904 (vs with sh at 934 and 962), 860 (s), 820 (m), 788 (s), 704 (w) 698 (w), 648 (w), 612 (w), 586 (s with sh at 576), 490 (w), 440 (w, b).

The ¹⁹F NMR spectrum (ϕ) gave the following relative peak areas: SF_5 (4.9), C(O)F (1), SO₂F (1). A molecular ion was not observed, but other appropriate fragments were found. Mass spectrum (m/e) : 161 (M – S_F^2)⁺, 149 (SF₃CSO)⁺, 142 (M – SF₆)⁺, 129 (C₂F₃OS)⁺,
127 (SF₃ or CFO₂S₂)⁺, 113 (C₂F₃S)⁺, 108 (SF₄)⁺, 101 (SF₃C)⁺, 97
(C₂F₃O)⁺, 89 (SF₃)⁺, 91 (C₂FOS)⁺, 83 (SO $(SOF)^{+}$, 64 $(SO₂)^{+}$, 60 $(SOC)^{+}$, 51 $(SF)^{+}$, 48 $(SO)_{+}$, 47 $(COF)^{+}$, 32 (S)⁺, 31 (CF)⁺. Anal. Calcd: 8.34; F, 52.75. Found: C, 8.47; F, 52.3.

⁽¹²⁾ De Marco, R. A.; Fox, W. B. J. Fluorine Chem. 1978, 12, 137.

Steward, J.; Kegley, L.; White, H. F.; Gard, G. L. J. Org. Chem. 1969, (14) 34, 760.

SF₅CFHSO₂F (III) from I. To a 40-mL Kel-F vessel equipped with a Teflon top and Whitey stainless-steel valve were added \overline{I} (8.4 mmol) and $H₂O$ (12 mmol). The reaction mixture was allowed to warm slowly to room temperature prior to heating at 50-60 °C for \sim 60 h. The materials, which were volatile at -78 $\rm ^{o}C$ (CO₂ and HF), were periodically removed from the reaction vessel. The product, SF,C-HFSO₂F (5.6 mmol), was formed: 67% yield; bp $78\degree$ C (755 mm). Mol wt: calcd 242; found 243. The infrared spectrum gave the following absorption bands (cm-'): 2994 (vw), 1470 **(s),** 1250 (m with sh at 1270), 1226 (m with sh at 1212), 1156 (ms), 914 (vs), 892 (vs), 828 (mw), 784 **(s),** 728 (mw), 678 (m), 620 (w), 586 **(s),** 504 (w), 468 (w), 438 (vw).

The ¹⁹F NMR spectrum (ϕ) gave the following relative peak areas: $SF (1.0), SF₄ (4.1), CF (1.0), SO₂F (1.0).$ A molecular ion was not observed, but other appropriate fragments were found. Mass spectrum *(m/e):* 127 (SF₅)⁺, 108 (SF₄)⁺, 101 (SF₃C)⁺, 89 (SF₃)⁺, 83 (SO₂F, CHF2S)', 67 (SOF)', 64 **(SO2,** CHFS)', 51 (SF)', 48 (SO)', 44 (C) ^{\ddagger}, 32 (CHF, S, O₂)^{$+$}, 31 (CF)^{$+$}. Anal. Calcd: C, 4.96; H, 0.42; F, 54.92. Found: C, 4.95; H, 0.45; F, 54.6.

SF₅CFHSO₂F (III) from II. To a 35-mL Kel-F vessel equipped with a Teflon top and Whitey stainless-steel valve were added 4.06 mmol of I11 and a total of 5.0 mmol of water. The reaction mixture was stirred under ambient conditions for 18 days. The product, 4.06 mmol of $SF₃CFHSO₂F$, was separated from HF and $CO₂$ as mentioned above; yield 100%. The infrared spectrum agreed with that found previously.

Ca(SF₅CHFSO₃)₂ (IV) from I. To a 25-mL Pyrex reaction vessel equipped with a Teflon stirring bar and Pyrex stopper were added 6.4 mmol of I, 0.96 mol of H_2O , and 13.2 mmol of CaO. After the mixture was stirred for 25 h, solid $CO₂$ was added to the mixture in order to precipitate unreacted CaO. The resulting mixture was filtered and $Ca(SF_5CHFSO_3)_2$ was recovered from the filtrate by removing the H_2O under vacuum. The white solid did not melt but decomposed at \sim 350 °C. The infrared spectrum gave the following absorption bands (cm-I): 2999 (vw), 1316 (m), 1268 **(s)** 1236 **(s** with sh at 1250), 1144 (m), 1100 (m with sh 1086), 888 **(s),** 858 **(s),** 824 (m), 722 (m), 670 (m), 636 (m), 598 (m), 582 (w). 570 (w), 564 (w), 512 (w), 454 (w), 406 (w), 384 (m).

The ¹⁹F NMR spectrum (ϕ) gave the following relative peak areas: SF (1.1), SF₄ (4.0), CF (1.0). Anal. Calcd: C, 4.63; H, 0.39; F, 43.98. Found: C, 4.86; H, 0.44; F, 43.8.

 $Ca(SF_5CFHSO_3)_2$ (IV) from III. To a 25-mL Pyrex reaction vessel equipped with a Teflon stirring bar and Pyrex stopper were added 0.87 mmol of **III** and an excess of a saturated $Ca(OH)$ ₂ solution. After the mixture was stirred for \sim 1 h at room temperature, solid CO₂ was added in order to precipitate out any unreacted $Ca(OH)_2$ as $CaCO₃$. The mixture was filtered, and the filtrate was heated to evaporate off the water. **IV** was obtained in a 10% yield. The infrared spectrum agreed with that previously found by reacting I directly with CaO in water.

Na(SF₅CFHSO₃) (V). To a 50-mL Pyrex glass round-bottomed flask that contained a Teflon-coated stirring bar were added 17.8 mmol of I, 25 mL of H_2O , and 56.2 mmol of NaOH. The mixture was allowed to stir for 3 days under ambient conditions prior to neutralization with 98% H_2SO_4 . V, along with NaF and Na₂SO₄ (total weight 5.44 **g),** was recovered by removing the water under vacuum transfer. The infrared spectrum gave the following absorption bands (cm-'): 3001 (vw), 1312 (m), 1276 (s), 1252 **(s),** 1230 **(s),** 1124 (m, with sh at 1140), 1072 (ms), 884 **(s),** 844 (s), 814 (m), 712 (m), 664 (w), 634 (mw), 594 (mw), 578 (w,sh), 548 (w), 528 (w).

SF₅CFHSO₃H (VI). To a 25-mL Pyrex glass round-bottomed flask equipped with a Teflon stirring bar were added 5.28 g of a mixture of V, NaF, and Na₂SO₄ (4.7 g or 17.9 mmol SF₅CFHSO₃Na) and 42.2 mmol of 100% H_2SO_4 . The mixture was slowly distilled under reduced pressure, giving 2.56 (10.7 mmol) of the clear colorless acid, SF_5CFHSO_3H : yield 60%; bp 89-90 °C (0.15 mm). When Ca(S- F_5CHFSO_3)₂ was reacted in place of SF_5CFHSO_3Na , the acid was obtained in 68% yield. The infrared spectrum gave the following absorption bands (cm^{-1}) : 2990 (vw), 1383 (vw), 1313 (mw), 1250 **(s,** b), 1220 **(s),** 1113 (m), 1052 (ms), 870 (vs, b), 814 (m), 714 (ms), 660 (mw), 630 (ms), 587 (ms), 550 (mw), 522 (mw), 455 (w), 400 (w)

The ¹⁹F NMR spectrum (ϕ) gave the following relative peak areas: SF (1.0) , SF₄ (4.1) , CF (1.0) . In the negative ion mass spectrum, a molecular ion was not observed, but other appropriate negative ions were found. Mass spectrum (m/e) : 239 (M - H)⁻, 127 (SF₅)⁻, 114 81 (SO₃H)⁻, 80 (SO₃)⁻, 76 (CSO₂)⁻, 70 (SF₂)⁻, 64 (SFCH, SO₂)⁻. Other fragment ions due to an acid dimer were present in small amounts. Anal. Calcd: C, *5.00,* H, 0.84; F, 47.47. Found: C, 5.18; H, 0.81; F, 47.7. (M + H - SF₅)⁻, 113 (HFCSO₃H)⁻, 112, (FCSO₃H)⁻, 108 (SF₄)⁻, 101 (SF₃C)⁻, 94 (HCSO₃H)⁻, 93 (CSO₃H)⁻, 89 (SF₃)⁻, 83 (SF₂CH)⁻,

III and H₂O. To a 40-mL Kel-F vessel with a Teflon top and Whitey stainless-steel valve were added 1.69 mmol of 111 and 2.22 mmol of $H₂O$. The reaction vessel was heated at 55 °C (58 h) and at 90–100 ^oC (35 h). Under these conditions, no reaction was observed.

 $SF_5CF = CF_2$ and SO_2F_2 . To a 75-mL stainless-steel Hoke vessel equipped with a Whitey high-pressure stainless-steel valve was added 56 mmol of CsF. The CsF was dried under vacuum at \sim 140 °C. to the dried CsF were added 177 mmol of predried diglyme, 41.2 mmol of $SF₅CF=CF₂$, and 40.7 mmol of $SO₂F₂$. The reaction mixture was heated at \sim 120 °C (10 h) with frequent shaking. The major products found via their characteristic infrared spectrum were SO_2F_2 , diglyme, SF4, and a fluorocarbon substance. If acetonitrile is used as the solvent, the major products were SO_2F_2 , CH₃CN, and SF₅CFHCF₃.

Acknowledgment. The Gas Research Institute and the National Science Foundation (Grant CHE-8100156) are thanked for support of this work. Dr. Gary Knerr obtained the mass spectra.

Synthesis, Structure, and Electronic Features of (p-Sulfido) bis[(N,N'-ethylenebis(salicyla1diminato))iron(III)], [Fe(salen)12S, Containing the Only Authenticated Example of the Fe(II1)-S-Fe(II1) Single Bridge

J. R. DORFMAN,^{1a} J.-J. GIRERD,^{1b} E. D. SIMHON,^{1a} T. D. P. STACK,^{1a} and R. H. HOLM*^{1a}

Received June 13, *1984*

In a continuing investigation of sulfido-bridged iron complexes, the previously reported title compound was prepared by a new method, the reaction of $[Fe(salen)]_2\dot{O}$ and $(Me_3Si)_2S$ in dry DMF. $[Fe(salen)]_2S$ was obtained as a black solid that crystallizes in triclinic space group P_1^T with $a = 10.792$ (2) Å, $b = 11.746$ (2) Å, $c = 13.215$ (3) Å, $\alpha = 110.56$ (2)^o, β = 99.23 (2)^o, γ = 72.27 (2)^o, and Z = 2. With use of 2720 unique data $(F_o^2 > 3\sigma(F_o^2))$ the structure was refined to $R(R_w) = 4.33$ (4.48). The molecule is binuclear with two [Fe(salen)]⁺ half-dimers bridged by a sulfide atom. Ligands in the half-dimers are nonplanar and adopt the umbrella conformation; Fe-0 and Fe-N bonds are of normal lengths. The Fe(III) atoms are displaced 0.591 and 0.625 Å from the least-squares N₂O₂ coordination planes toward the μ -S atom, forming pyramidal FeNzOzS units. The Fe-S-Fe bridge is unsymmetrical, with bond distances of 2.150 (2) and 2.190 (2) **A.** The overall configuration of $[Fe(salen)]_2S$ is similar to that of its congeneric analogue $[Fe(salen)]_2O$ in its solvated and unsolvated crystalline forms. The Fe-S-Fe bridge angle of 121.8 (1)^o is substantially smaller than the Fe-O-Fe angle (145^o) in $[Fe(salen)]₂O$ and any other binuclear Fe(III) complexes containing an unsupported μ -oxo bridge. Magnetic susceptibility measurements at 22-291 K demonstrate that $[Fe(salen)]_2S$ is antiferromagnetic. Analysis of the data under the Hamiltonian $H = -JS_1.S_2$ provided an excellent fit with $J = -176$ cm⁻¹ and $g = 2.016$. The most recent value for [Fe(salen)]₂O is -178 cm⁻¹, showing essentially equal magnetic coupling of the two complexes when configured with the indicated bridge angles. A simple MO argument suggests that at equal bridge angles $[Fe(salen)]_2S$ may be the more strongly coupled. Isotropic ¹H NMR shifts are mainly contact in origin, and shift ratios with $[Fe(salen)]$ ₂O indicate that hyperfine coupling constants at equivalent positions are different in the two complexes. In DMF solution $[Fe(salen)]_2S$ displays a $S \rightarrow Fe(III)$ charge-transfer band at 490 nm $(\epsilon_M 6930)$, similar to that of sulfide hemerythrin, and one-electron oxidation and reduction at -0.28 and -1.27 V vs. SCE, respectively. The reduction product has an oxidation level equivalent to that of the currently characterized state of sulfide hemerythrin. $[Fe(salen)]_2S$ is the only structurally authenticated example of a molecule with a Fe(II1)-S-Fe(II1) single bridge.

Introduction

The bridge unit $Fe(III)-O-Fe(III)$ is a frequent constituent of synthetic iron complexes.2 It has been stabilized at 4-, *5-,* and 6-coordinate Fe(II1) sites, with prominent examples of the first two types being $[Fe₂OCl₆]²⁻³$ and $[Fe(salen)]₂O⁴⁻⁹$ and other complexes derived from salicylaldiminato ligands.^{7,10-13} Complexes with unsupported bridges have varying Fe-O-Fe angles $(\sim 140 - 180^{\circ3 - 6,10,11,14-16})$ and are invariably antiferromagnetic with $-J \approx 180-230$ cm⁻¹.^{2,14,16} This bridge is of biological significance as well. Its presence has been established in several met forms of the invertebrate oxygenbinding protein hemerythrin¹⁷ (Hr) by X-ray diffraction^{17a,18}

(a) Harvard University. (b) Université de Paris-Sud.

- Murray, K. **S.** *Coord. Chem. Rev.* 1974, *12,* 1.
- (a) Drew, M. G. B.; McKee, V.; Nelson, S. M. J. Chem. Soc., Dalton
Trans. 1978, 80. (b) Reiff, W. M.; Brennan, T. F.; Garafalo, A. R.
Inorg. Chim. Acta 1983, 77, L83. (c) Dehnicke, K.; Prinz, H.; Maasa,
- W.; Pebler, J.; Schmidt, R. Z. Anorg. Allg. Chem. 1983, 499, 20.
Gerloch, M.; McKenzie, E. D.; Towl, A. D. C. J. Chem. Soc. A 1969, 2850. salen = [1,2-C₂H₄(o-C₆H₄(O)CH=N₂₁²⁻.
Coggon, P.; McPhail, A. T.; Mabbs,
- *Soc. A* 1971, 1014. Davies, J. E.; Gatehouse, B. M. *Acta Crystallogr., Sect. E:* **Strucr.** *Crystallogr. Cryst. Chem.* 1973, *B29,* 1934.
-
- Lewis, J.; Mabbs, **F.** E.; Richards, A. *J. Chem. SOC. A* 1967, 1014. Mitchell, P. C. H.; Parker, D. A. J. *Inorg. Nucl. Chem.* 1973,35, 1385.
-
-
- Wollman, R. G.; Hendrickson, D. N. *Inorg. Chem.* 1977, 16, 723.
Davies, J. E.; Gatehouse, B. M. *Cryst. Struct. Commun.* 1972, 1, 115.
Davies, J. E.; Gatehouse, B. M. *Acta Crystallogr., Sect. B: Struct.*
- *Crystallogr. Cryst. Chem.* 1973, *B29,* 2651. van den Bergen, A,; Murray, K. *S.;* O'Connor, M. J.; Rehak, N.; West,
- B. 0. *Aust. J. Chem.* 1968, *21,* 1505. van den Bergen, A,; Murray, K. *S.;* West, B. 0. *Ausr.* J. *Chem.* 1968,
- *21,* 1517. Tabulations of $\text{Fe}^{\text{III}}_2\text{O}$ complexes and their magnetic and structural properties are available:^{2,3a,6,1,1,3} Thich, J. A.; Toby, B. H.; Powers, D. A.; Potenza, J. A.; Schugar, H. J. *Inorg. Chem.* 1981, 20, 331
- (15) Calligaris, M.; Nardin, *G.;* Randaccio, L. *Coord. Chem. Rev.* 1972, *7,* 385.
- **Ou,** C. C.; Wollmann, R. *G.;* Hendrickson, D. N.; Potenza, J. A.; Schugar, H. J. *J.* Am. *Chem. SOC.* 1978, 100, 4717.

and EXAFS¹⁹ investigations. Excellent models of the met-Hr active site have been prepared in which, as in the protein, the bridge is supported by two μ -RCO₂⁻ ligands.^{20,21}

In contrast to the biological and extensive synthetic *oc*currence of the $Fe₂O$ unit, the supported or unsupported single-bridge Fe(II1)-S-Fe(II1) has not been structurally authenticated. This Fe₂S unit poses a number of fundamental questions, including the value of the bridge angle and its variability and the transmission of electronic effects between half-dimers, compared to structurally analogous oxo-bridged complexes. Double bridges of this type have been shown to **occur** in, e.g., the extensively investigated antiferromagnetic dimers $[Fe_2(\mu-S)_2L_4]^2$ ⁻ (L = RS⁻, halide).²² Corresponding oxo-bridged complexes are unknown. An attempt to prepare a singly bridged 4-coordinate dimer from $[Fe₂OCl₆]²⁻$ and a singly bridged 4-coordinate dimer from $[Fe_2OCl_6]^2$ and
hexamethyldisilathiane, a reagent shown to be useful for O
 \rightarrow S ligand substitution,²³ resulted in the formation of known $[Fe_2S_2Cl_4]^2$ in high yield in reaction 1.^{23a} The only previously because in, e.g., the extensively investigated and
dimers $[Fe_2(\mu-S)_2L_4]^2$ ⁻ (L = RS⁻, halide).²²
oxo-bridged complexes are unknown. An att
a singly bridged 4-coordinate dimer from |
hexamethyldisilathiane, a reagent

$$
[Fe2OCl6]2- + 2(Me3Si)2S MeCN [Fe2S2Cl4]2- + (Me3Si)2O + 2Me3SiCl (1)
$$

- (17) (a) Stenkamp, R. E.; Jensen, L. H. *Adv. Inorg. Biochem.* 1979,1,219. (b) Klotz, I. M.; Kurtz, D. M., Jr. *Acc. Chem. Res.* 1984. 17, 16.
- (18) (a) Hendrickson, W. A. In 'Invertebrate Oxygen-Binding Proteins: Structure, Active Site, and Function 7, Lamy, J., Lamy, J., Eds.; Marcel
Dekker: New York, 1981; pp 503-515. (b) Stenkamp, R. E.; Sieker,
L. C.; Jensen, L. H.; Sanders-Loehr, J. Nature (London) 1981, 291, 263.
(c) Stenkamp
- 1983, 19, 247. (19) Elam, W. T.; Stern, E. **A.;** McCallum, J. D.; Sanders-Loehr, J. *J. Am. Chem. SOC.* 1982, 104, 6369.
- (20) Armstrong, W. H.; Lippard, **S.** J. *J. Am. Chem. Soc.* 1983,105,4837. HB(~z)~ = **hydridotris(pyrazoly1)borate** monoanion. (21) Wieghardt, K.; Pohl, K.; **Gebert,** W. *Angew. Chem., Int. Ed. Engl.* 1983,
- *22,* 727.
- (22) Berg, J. M.; Holm, R. H. In "Metal Ions in Biology"; Spiro, T. G., Ed.; Wiley-Interscience: New York, 1982; Vol. 4, Chapter 1.
- (23) (a) Do, Y.; Simhon, E. D.; Holm, R. H. *Inorg. Chem.* 1983, 22, 3809. (b) Do, Y.; Simhon, E. D.; Holm, **R.** H. *Inorg. Chem.,* in press.